Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rejuvenation Res ; 21(2): 102-108, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28673122

RESUMO

The aging female rat constitutes an interesting model of spontaneous and progressive age-related dopaminergic dysfunction as it allows assessing new therapeutic strategies for Parkinson's disease. Insulin-like growth factor I (IGF-I) is emerging as a powerful neuroprotective molecule, strongly induced in the central nervous system after different insults. We constructed a helper-dependent recombinant adenoviral vector (HDRAd-IGFI) harboring the gene for rat IGF-I. This was used to implement long-term IGF-I gene therapy in the hypothalamus of aged female rats, which display hypothalamic dopaminergic (DA) dysfunction and, as a consequence, chronic hyperprolactinemia. Rejuvenating long-term IGF-I gene therapy was implemented in young (3 months) and aged (24 months) female rats, which received a single intrahypothalamic injection of 4 × 109 viral particles of either HD-RAd-IGFI or HD-RAd-DsRed (control vector) and were sacrificed 119 days postinjection. In the young animals, neither vector modified serum prolactin (PRL) levels, but in the RAd-IGFI-injected aged rats a nearly full reversion of their hyperprolactinemic status was recorded. Morphometric analysis revealed a significant increase in the total number of tyrosine hydroxylase (TH)-positive cells in the hypothalamus of experimental compared with control aged animals (5874 ± 486 and 3390 ± 498, respectively). Our results indicate that IGF-I gene therapy in aged female rats is highly effective in rejuvenating the hypothalamic DA neuron groups.


Assuntos
Dopamina/metabolismo , Terapia Genética/métodos , Vetores Genéticos/administração & dosagem , Hiperprolactinemia/terapia , Fator de Crescimento Insulin-Like I/genética , Rejuvenescimento , Adenoviridae/genética , Animais , Feminino , Hiperprolactinemia/genética , Hiperprolactinemia/patologia , Hipotálamo/citologia , Hipotálamo/metabolismo , Ratos , Ratos Sprague-Dawley
2.
Ageing Res Rev ; 40: 168-181, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28903069

RESUMO

Aging is associated with a progressive increase in the incidence of neurodegenerative diseases, with Alzheimer's (AD) and Parkinson's (PD) disease being the most conspicuous examples. Within this context, the absence of efficacious therapies for most age-related brain pathologies has increased the interest in regenerative medicine. In particular, cell reprogramming technologies have ushered in the era of personalized therapies that not only show a significant potential for the treatment of neurodegenerative diseases but also promise to make biological rejuvenation feasible. We will first review recent evidence supporting the emerging view that aging is a reversible epigenetic phenomenon. Next, we will describe novel reprogramming approaches that overcome some of the intrinsic limitations of conventional induced-pluripotent-stem-cell technology. One of the alternative approaches, lineage reprogramming, consists of the direct conversion of one adult cell type into another by transgenic expression of multiple lineage-specific transcription factors (TF). Another strategy, termed pluripotency factor-mediated direct reprogramming, uses universal TF to generate epigenetically unstable intermediates able to differentiate into somatic cell types in response to specific differentiation factors. In the third part we will review studies showing the potential relevance of the above approaches for the treatment of AD and PD.


Assuntos
Envelhecimento/metabolismo , Encéfalo/metabolismo , Reprogramação Celular/fisiologia , Medicina Regenerativa/métodos , Rejuvenescimento/fisiologia , Envelhecimento/patologia , Animais , Encéfalo/patologia , Diferenciação Celular/fisiologia , Humanos , Células-Tronco Pluripotentes Induzidas/fisiologia , Células-Tronco Pluripotentes Induzidas/transplante , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Medicina Regenerativa/tendências , Fatores de Transcrição/metabolismo
3.
Gerontology ; 63(5): 426-431, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28538216

RESUMO

The achievement of animal cloning and subsequent development of cell reprogramming technology are having a profound impact on our view of the mechanisms of aging in complex organisms. The experimental evidence showing that an adult somatic nucleus implanted into an enucleated oocyte can give rise to a whole new individual strongly suggests that the integrity of the genome of an adult nucleus is fully preserved. Here, we will review recent experimental evidence showing that pluripotency gene-based cell reprogramming can erase the epigenetic marks of aging and rejuvenate cells from old individuals reversing most signs of aging and that when induced pluripotent stem cells are differentiated back to the cell type of origin, the rejuvenated cells share many of the features of wild-type counterparts from young donors. This evidence supports the idea that progressive epigenetic dysregulation may be the key driver of organismal aging and challenges the conventional view of aging as an irreversible process. The model of aging as an epigenetic process provides an elegant explanation of a number of age-related processes difficult to explain by conventional theories of aging.


Assuntos
Envelhecimento/fisiologia , Clonagem de Organismos , Repressão Epigenética/fisiologia , Animais , Reprogramação Celular , Rejuvenescimento/fisiologia
4.
Mol Immunol ; 87: 180-187, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28501652

RESUMO

Thymulin is a thymic peptide possessing anti-inflammatory effects. In order to manipulate thymulin expression in gene therapy studies, we built a bidirectional regulatable two-vector Tet-Off system and the corresponding control system. The experimental two-vector system, ETV, consists of a recombinant adenovector (RAd) harboring an expression cassette centered on a Tet-Off bidirectional promoter flanked by a synthetic gene for thymulin and the gene for humanized Green Fluorescent Protein (hGFP). The second adenovector of this system, RAd-tTA, constitutively expresses the regulatory protein tTA. When cells are co-transduced by the two adenovector components, tTA activates the bidirectional promoter and both transgenes are expressed. In the presence of the antibiotic doxycycline (DOX) transgene expression is deactivated. The control two-vector system, termed CTV, is similar to ETV but only expresses hGFP. In CHO-K1, BHK, and C2C12 cells, ETV and CTV induced a dose-dependent hGFP expression. In CHO-K1 cells, transgene expression was almost completely inhibited by DOX (1mg/ml). After intracerebroventricular injection of ETV in rats, thymulin levels increased significantly in the cerebrospinal fluid and there was high hGFP expression in the ependymal cell layer. When injected intramuscularly the ETV system induced a progressive increase in serum thymulin levels, which were inhibited when DOX was added to the drinking water. We conclude that our regulatable two-adenovector system is an effective molecular tool for implementing short and long-term anti-inflammatory thymulin gene therapy in animal models of acute or chronic inflammation.


Assuntos
Adenoviridae/genética , Vetores Genéticos/genética , Inflamação/genética , Inflamação/terapia , Fator Tímico Circulante/genética , Adenoviridae/efeitos dos fármacos , Animais , Células CHO , Linhagem Celular , Cricetulus , Doxiciclina/farmacologia , Feminino , Terapia Genética/métodos , Proteínas de Fluorescência Verde/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Ratos , Ratos Sprague-Dawley , Transgenes/efeitos dos fármacos , Transgenes/genética
5.
Artigo em Inglês | MEDLINE | ID: mdl-25699290

RESUMO

In the central nervous system, cholinergic and dopaminergic (DA) neurons are among the cells most susceptible to the deleterious effects of age. Thus, the basal forebrain cholinergic system is known to undergo moderate neurodegenerative changes during normal aging as well as severe atrophy in Alzheimer's disease (AD). Parkinson's disease (PD), a degeneration of nigro-striatal DA neurons is the most conspicuous reflection of the vulnerability of DA neurons to age. In this context, cell reprogramming offers novel therapeutic possibilities for the treatment of these devastating diseases. In effect, the generation of induced pluripotent stem cells (iPSCs) from somatic cells demonstrated that adult mammalian cells can be reprogrammed to a pluripotent state by the overexpression of a few embryonic transcription factors (TF). This discovery fundamentally widened the research horizon in the fields of disease modeling and regenerative medicine. Although it is possible to re-differentiate iPSCs to specific somatic cell types, the tumorigenic potential of contaminating iPSCs that failed to differentiate, increases the risk for clinical application of somatic cells generated by this procedure. Therefore, reprogramming approaches that bypass the pluripotent stem cell state are being explored. A method called lineage reprogramming has been recently documented. It consists of the direct conversion of one adult cell type into another by transgenic expression of multiple lineage-specific TF or microRNAs. Another approach, termed direct reprogramming, features several advantages such as the use of universal TF system and the ability to generate a rejuvenated multipotent progenitor cell population, able to differentiate into specific cell types in response to a specific differentiation factors. These novel approaches offer a new promise for the treatment of pathologies associated with the loss of specific cell types as for instance, nigral DA neurons (in PD) or basal forebrain cholinergic neurons in the early stages of AD. The above topics are reviewed here.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...